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Abstract

This paper enables student modeling analyses at scale, by presenting a parallel algorithm

for performing SPARse Factor Analysis (SPARFA). SPARFA is accepted as a state-of-the-

art machine learning approach for estimating student knowledge levels and predicting their

performance in not-yet-taken educational tasks [12]. However, with the Likelihood Maximization

(LM) formulation behind it resulting in a non-convex optimization problem with many local

minima, the scalability has been a challenge for SPARFA. While the original method employs

an alternating optimization approach to approximately solve the SPARFA LM problem, this

paper employs a Parallel Coordinate Descent (PCD) algorithm parallelized in the shared memory

setting. The performance of PCD is evaluated on varied problem instances with synthetic data

and is found to successfully solve instance with up to 7.5 Million variables, which makes it

suitable to make inference from the data of any real-world Massive Open Online Course. The

experimental results illustrate the superiority of the PCD over the sequential SPARFA with up

to 7x speedup particularly in more realistic situations, and suggest that shared memory systems

are sufficient for handling any realistic student modeling tasks.

Keywords: parallel coordinate descent, parallel non-convex optimization, sparse matrix factor-

ization, intelligent tutoring systems

1 Introduction

Educational systems have witnessed a substantial transition from traditional educational methods

mainly using text books, lectures, etc. to newly developed systems which are artificial intelligent-

based systems and personally tailored to the learners. The resulting popularity of online educational

platforms with large numbers of students and tasks/problems to solve motivates the development

of highly efficient algorithms to personalize the learning experiences [12]. Personalized Learning

Systems (PLSs) and Intelligent Tutoring Systems (ITSs) are two areas of educational data mining

that take on this challenge. Taking into account the individual progress of learners, PLSs customize

the learning experience to the learners’ abilities/needs [6]. In computerized learning environments,

ITSs model and infer student’s knowledge learning states [5, 16, 20]. For a while, Latent Factor
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Modeling and Bayesian Knowledge Tracing have been the primary student modeling ITS tools [9].

These approaches encompass computational models, conceived in different scientific disciplines

including cognitive and learning sciences, education, computational linguistics, artificial intelligence,

operations research, and other fields [5, 12,14,16].

More recently, Lan et al. developed a new machine learning-based model that combines learning

analytics, which approximates students knowledge of subject matter concepts underlying a domain,

and content analytics, which estimates the relationships among a collection of questions and those

concepts [12]. This model can be used to calculate the probability that a learner provides a correct

response to a question in terms of three factors: their understanding of a set of underlying concepts,

the concepts involved in each question, and each questions intrinsic difficulty [12]. Lan et al.

proposed a bi-convex Likelihood Maximization approach for SPARse Factor Analysis (SPARFA),

and exploited an alternating optimization approach to approximately solve the LM problem.

A SPARFA solver has to iterate between two sub-problems, until each sub-problem is optimally

solved (due to the bi-convexity of the likelihood function). However, in order to run SPARFA

analyses with large numbers of questions and students, i.e., to make it useful for MOOCs of realistic

sizes, its scalability needs to be improved. To this end, this paper presents a parallel coordinate

descent (PCD) algorithm that uses shared memory. The idea behind PCD is to parallelize the

optimization task over computing resources (i.e., cores or processors) so that the cores work on

different parts of the optimization problem (in terms of blocks of variables) simultaneously. At each

iteration of PCD, a number of variables (i.e. from each block of variables) depending on the number

of threads are selected randomly. Each thread individually works on a smaller set of variables and

update them based on the gradient information.

This paper contributes to the educational data mining domain with the resulting algorithm that

can handle a very large number of variables – up to 7.5 Million variables – in a given SPARFA

instance. The computational experiments with synthetic data exhibit that PCD produces up to

7.4x speedup, with the highest speedups achieved with the largest instances.

The rest of this paper is organized as follows. Section 2 reviews the original SPARFA model and

provides an overview of parallel optimization algorithms proposed for MF applications. Section 3

gives a detailed description of the new PCD algorithm. Section 4 reports experimental results on

synthetic data of varied sizes. Section 5 concludes the paper and discusses future research directions.

2 Challenges of Sparse Factor Analysis at Scale

Matrix Factorization (MF) is a key component of machine learning-based systems that work, e.g.,

to recommend items to users, estimate missing data values, model gene expressions. More recently,

MF has been found useful for predicting students’ performance on given activities, e.g., problem

solving. Indeed, with the advent of online learning platforms and their massive accessibility, much

data are becoming available about students’ knowledge states to assist educators in monitoring and

accelerating learning. The developments in this paper address the scalability of MF performed for
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large educational systems, where thousands of students in physical or virtual classes work on the same

set of problems referred to as problem bank. This section overviews and outlines the computational

challenges of SPARFA as a state-of-the-art machine learning framework for MF in student modeling.

SPARFA utilizes an alternating optimization approach to tune the parameters of its model, however,

this approach is computationally expensive, especially in large-scale problems. This section argues

in favor of an alternative algorithm to use computational resources more effectively via efficient

parallelization.

Student modeling is the cornerstone ITS task that reveals how the knowledge acquisition process

can be decomposed as progress in multiple dimensions, typically referred to as knowledge components

or skills [9,13]. In order to strategically attack the problem of assigning educational tasks to students

in an personalized manner, one needs to both infer each student’s skills and determine which sets

of skills are required to handle the tasks not yet undertaken by the student. Factor analysis is

a well accepted approach to student modeling based on the student performance in quizzes and

homeworks [10,11]. SPARFA is a machine learning-based model that connects learning analytics

and content analytics to students’ performance. It infers the probability that a student correctly

answers a question or solves a problem based on their understanding of a set of underlying course

concepts, on the concepts involved in each question, and each question’s intrinsic difficulty [12].

Given an incomplete matrix of students’ performances, Maximum Likelihood Estimation (MLE) is

performed in SPARFA to make the inference about students and questions, simultaneously.

Let Y denote a binary-valued data set of performance of N students on Q questions; hence, Y is

a matrix of size Q×N with entry Yij = 1(0) if student j has answered question i correctly. Matrix

Y is typically very sparse. One way to estimate the missing values in Y is to factorize Y into

matrices W,C and M such that the function WC+M returns the estimates for the missing values

in Y. It is assumed that the collection of questions is related to a small number of abstract concepts

represented by W, where the weight Wik (∀i = 1, . . . , Q and k = 1, . . . ,K) quantifies the degree to

which question i involves concept k, with K being a total assumed number of such latent abstract

concepts. Let Ckj (∀k = 1, . . . ,K and j = 1, . . . , N) denote student j’s knowledge of concept k (C

is the matrix version of Ckj). M is an Q×N matrix reflecting the intrinsic question difficulty. It is

assumed that K � Q,N so W becomes a tall, narrow Q×K matrix and C a short, wide K ×N
matrix. The model for the binary valued observations Yij ∈ {0, 1} is then expressed as

Zij = wT
i cj + µi ∀ i = 1, . . . , Q j = 1, . . . , N,

Yij ∼ Ber(Φ(Zij)),

where wi and cj denote the ith row and jth column of W and C, respectively, µi is the difficulty

level of question i, with Ber(p) denoting a Bernoulli distribution with success probability p and

Φ(x) defined as

Φ(x) =
1

1 + e−x
.

In order to estimate W, C and µ, Likelihood Maximization (LM) of the observed data Ωobs is
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performed,

(P1) : max
W,C

∑
(i,j)∈Ωobs

log
(
p(Yij |wi, cj))

s.t.

‖wi‖0 ≤ δ ∀ i (1)

‖wi‖2 ≤ β ∀ i (2)

‖C‖F = ξ (3)

Wik ≥ 0 ∀ i, k, (4)

where p(Yij |wi, cj) = Φ
(
wT

i cj)
Yij
[
1−Φ

(
wT

i cj)]
1−Yij . The Constraint Sets (1) through (4) guarantee

that the solution to (P1) satisfies the identifiability property of matrix factorization. Constraints (1)

impose the sparsity restriction on matrix W, ‖a‖0 counts the number of non-zero entries in vector

a and ‖C‖F denotes the Frobenius norm. Since the optimization under Constraint Set (1) requires

a combinatorial search, this set of constraints can be replaced by the following sets of constraints

(l -1 norm):

‖wi‖1 ≤ δ, ∀ i.

The constrained optimization problem (P1) can be transformed into an unconstrained optimization

problem using Lagrange multipliers:

(P2) : min
W,C,Wik≥0 ∀i,k

∑
(i,j)∈Ωobs

−log
(
p(Yij |wi, cj)) + λ

∑
i

‖wi‖1 +
µ

2

∑
i

‖wi‖22 +
γ

2
‖C‖2F . (5)

The resulting optimization problem (P2) is biconvex in W and C [12]. Lan et al. presented

SPARFA-M algorithm for solving this problem [12]. The idea of that algorithm is based on an

alternating approach that splits the problem into two sub-problems. Each sub-problem is optimaly

solved in a cyclic manner at each iteration. In general, the alternating approaches perform well

in bi-convex optimization, however, when the number of questions, Q as well as the number of

students, N increase, the sequential alternating approaches becomes slow, creating a challenge, and

hence, an opportunity for exploring parallel implementations.

We now turn to the topic of algorithm parallelization. In many applications, and in particular

in student modeling, parallelization pursues the objective of efficiently utilizing computational

resources – CPU and memory [19]. In general, for large-scale machine learning problems, the classical

optimization approaches including Newton, Interior-Point and other gradient-based methods become

prohibitive due to high computational effort spent in gradient evaluation at each iteration. Several

algorithm alternatives exist that manage to mitigate such efficiency challenges. One of these is

Stochastic Gradient Descent (SGD) [24]. The idea behind SGD is to select a subset of problem

variables at random, and estimate the gradient of the objective function with respect to the chosen
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variables [22], and then, based on this (partial) estimate, update all the variables. Another viable

alternative to the classical full gradient-based algorithms is Coordinate Descent (CD), where at

each iteration, the objective function is minimized only in some variables, while all the others are

kept constant [22]. In both cases, instead of solving a complex problem requiring much memory, a

sequence of less computationally demanding problems is solved.

CD has been successfully employed to tackle a variety of large-scale machine learning problems

including Support Vector Machines applications [7], Entropy Maximization [7], and Non-negative

Matrix Factorization [2], among others. Different variations of CD are distinguished, with its two

key components being the update rules and criteria of the selection of sequences in which variables

are to be updated [23]. Randomized CD algorithms is a special case of SG methods where the

estimation of a gradient is done with respect to only the randomly selected variables.

Although both SGD and CD are popular, they typically struggle handling large-scale data,

available for analysis in recommendation systems and intelligent tutoring systems research. However,

the inherent sequential and iterative processes allow for exploiting such computational resources as

GPU, multi-core or many-core CPUs. In fact, several parallel SGD and CD approaches have been

proposed, although mainly for solving convex, smooth optimization problems [1, 21].

Among the existing parallel-SGD methods, particularly among those used for matrix factorization,

some are designed for shared-memory systems where all the variables stored in memory are global,

i.e., accessible by all the cores [24]. For instance, Mini-Batching enables parallelization across

samples: here, SGD updates are done by separately working with samples of the data – averaging

the gradients obtained for all the samples [3]. Hogwild [17] describes an asynchronous, nowadays

popular method for parallelizing SGD, which utilizes the “data pass” approach by taking a sample

from data and performing an update to the global model without any inter-core communication

(for details, see [21]. However, CD-based algorithms have the advantage over SGD-based ones in

that the objective function is guaranteed to decrease at every iteration [22]. Moreover, in CD-based

algorithms, as convergence occurs, the gradient shrinks to zero, while SGD algorithms obtain

non-zero gradient estimates even at the optimum [22].

Parallel CD algorithms versions vary depending on the implementation and application-at-

hand; they may be made to work in a synchronous or asynchronous manner [24]. Synchronous

algorithms divide the computing tasks/operations into smaller subsets that can be executed in

parallel on a multi-core machine; however, the processors need to be synchronized frequently across

all the cores, to guarantee the consistency of task (re)assignment in each iteration. Asynchronous

implementations, typically preferred in practice, relax this requirement. Convergence analysis of

asynchronous methods is more complicated than that of synchronous methods [4], but once properly

tuned up, these methods excel in real-world big data analysis applications [8, 15, 18, 22]. In this

paper, an asynchronous parallel coordinate descent algorithm using shared memory is presented

that can be used to accelerate nontrivial matrix factorization problems in general and SPARFA in

application to student modeling in particular.
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3 The Parallel Coordinate Descent Algorithm for SPARFA

The dimensionality of the students’ performance prediction problem increases quickly with the

number of students and questions in online courses. However, sequential algorithms become slow

and stall even for trivial non-constrained convex optimization problems. To scale SPARFA to larger

problems, a parallel version of Coordinate Descent algorithm is implemented. Since many variants

of CD are possible, selecting the variant of the sequential CD is the first step in designing PCD. As

discussed in detail in [22], the problem variables to be updated can be selected in a cyclic manner,

or alternatively, they can be selected randomly at each iteration.

Certain designs of CD require the problem’s objective function to satisfy such proprieties as

smoothness and convexity. The optimization problem for SPARFA, introduced in (5), is both

non-convex and non-smooth (because the regularization function ‖wi‖1 ∀ i = {1, . . . , N} is non-

smooth), and its objective function is block-separable. In the sequential CD, at each iteration t,

a subproblem is created by making a linear approximation to (5) along the selected coordinate

direction at each iteration. In this implementation, two coordinates, wik and ckj , are selected at

each iteration randomly, and then, the corresponding subproblem is solved. Algorithm 1 details the

randomized coordinate descent algorithm for SPARFA (it is a sequential algorithm).

Algorithm 1 Coordinate Descent Algorithm

Input: Matrix YQ×N , K (number of hidden variables, λ, µ, γ, β.
Output: Matrices W∗

Q×K and C∗K×N .

1. Initialize randomly W and C.

2. while (stopping criteria) do

3. randomly select i ∈ {1, . . . , Q}, j ∈ {1, . . . , N} and k ∈ {1, . . . ,K}

4. calculate ∇FWik
and ∇FCkj

5. update W t+1
ik ← max{0,W t+1

ik − β∇FWik
}

6. update Ct+1
kj ←

1
1+βγ

(
C−kjβ∇FCkj

)
7. calculate Objective Function using (5)

8. update β ← t
t+2

9. t← t+ 1

10. end while

Selection of step sizes is a crucial element of the algorithm’s design that affects the convergence

rate; the step size selection rules may or may not be problem-specific. One approach is to select a

large value for the step-size (close to one) and adaptively shrink it at each iteration.
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3.1 Variable Selection Strategy

In Parallel Coordinate Descent algorithm, P coordinates are selected randomly and independently

from each other, to be updated in parallel, with P set equal to the number of available threads

or cores. The simplest version of PCD in the one where each coordinate, Wik, i ∈ {1, . . . , N},
k ∈ {1, . . . ,K} has an equal chance of being selected, independently from the selection done at

previous iterations – one can think of this strategy as a sampling with replacement. For convex

objective functions, one can prove the algorithm’s convergence under the random selection strategy.

However, a better approach – the one used in this paper – is to do sampling without replacement.

This scheme provides an opportunity for all the coordinates (decision variables) to be updated in sync.

Though the sampling without replacement is computationally more expensive, it achieves a desirable

balances between the exploration (of the solution space) and exploitation (of the computational

resources). Let Ωt denote a set of variables that have not been selected up till iteration t, with ‖Ωt‖
denoting the cardinality of set Ωt. The probability of selecting a variable is then given by 1

‖Ωt‖ .

Once Ωt becomes empty, it is re-populated again with all the coordinates.

3.2 Variable Updating Strategy

At each iteration of PCD, p pairs of variables selected from W and C are being updated. The

update for variable Wik, i ∈ {1, . . . , N}, k ∈ {1, . . . ,K}, is executed as follows:

W t+1
ik = max{0,W t+1

ik − β∇FWik
}, (6)

where ∇FWik
is the gradient of the objective function in (P2) with respect to variable Wik,

∇FWik
= −

N∑
j=1

Ct
kj

(
Yij −

1

1 + e−
∑K

k=1 W
t
ikC

t
kj

)
+ µ

W t
ik

‖W‖F
.

Equation (6) guarantees that Wik remains non-negative after every update. This is a projection

operator that helps to deal with non-smoothness of `1-regularization. Similarly, the gradient of the

likelihood function with respect to Ckj , ∇FCkj
, is expressed as

∇FCkj
= −

Q∑
i=1

W t
ik

(
Yij −

1

1 + e−
∑K

k=1 W
t
ikC

t
kj

)
+ γ

Ct
ik

‖C‖F
. (7)

The following projection operator enables a faster convergence and limits the growth of Ckj ,

Ct+1
kj =

1

1 + βγ

(
C−kjβ∇FCkj

)
. (8)

The PCD algorithm is summarized in the form of a pseudo code in Algorithm 2.
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Algorithm 2 Parallel Coordinate Descent Algorithm

Input: Matrix YQ×N , K (number of hidden variables, P (the number of processes), λ, µ, γ, β.
Output: Matrices W∗

Q×K and C∗K×N .

1. Initialize randomly W and C.

2. Calculate Objective Function using (5)

3. while (stopping criteria) do

4. In Parallel on P processes

5. randomly select i ∈ {1, . . . , Q}, j ∈ {1, . . . , N} and k ∈ {1, . . . ,K} with probability 1
‖Ωt‖

6. In Parallel on P processes

7. calculate ∇FWik
and ∇FCkj

8. update W t+1
ik ← max{0,W t+1

ik − β∇FWik
}

9. update Ct+1
kj ←

1
1+βγ

(
C−kjβ∇FCkj

)
10. In Parallel on P processes

11. Calculate Objective Function using (5)

12. update β ← t
t+2

13. update ‖Ωt‖

14. t← t+ 1

15. end while
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4 Computational Results

This section explores the performance of PCD and CD on small-, medium- and large-sized instances

of problem (P2). In order to evaluate the performance of PCD, the presented algorithm is tested

on 12 synthetically generated data sets. The synthetic data generation for student modeling is not

straightforward, in general, since one needs to come up with a realistic model incorporating the

differences between the students’ abilities and questions’ difficulty levels. In this paper, however, it

is only natural to use the original SPARFA model, because the object of our analysis is algorithm

scalability. Consistent with the SPARFA model assumptions, W is taken as a non-negative sparse

matrix and C as an arbitrary matrix with bounded elements. The probability that student j

answers question i correctly is computed per formula (2). The difficulty of questions is assumed to

be normally distributed with mean µD and σD.

4.1 Experimental Setup

In order to evaluate the performance of the PCD algorithm, multiple synthetic data sets of different

sizes were generated (the corresponding optimization problems have (Q+N)×K decision variables).

The resulting problem instances are categorized into three classes: (1) Small-sized problems, (2)

Medium-sized problems, and (3) Large-sized problems. This distinction is due to the fact that the

PCD performance in terms of the delivered speedup and convergence changes with an increasing

problem size. The largest problem instance generated featured 25,000 students and 600,000 questions

(its complexity is equal to that of any other instance with the same number of variables, e.g., one

with 600,000 students and 25,000 questions). This instance is large enough to test the scalability of

the presented Parallelized SPARFA to any realistic setting; indeed, no MOOC generates as much

data. Table 1 overviews the designed experimental setup with the 12 data sets.

Table 1: Experiments setup for testing Parallel Coordinate Descent algorithm.

Category Experiment ID Q N K Variables CD Iterations Num of Run Time Limit (s)

1 5 4 2 18 2000 30 0.1
Small 2 50 20 4 280 2000 30 0.5

3 500 200 6 4,200 2000 30 5
4 1,000 300 6 7,800 2000 30 20

5 5,000 1,000 8 48,000 1500 25 50
Medium 6 20,000 5,000 8 200,000 1200 25 100

7 30,000 8,000 9 342,000 1000 25 150
8 50,000 10,000 9 540,000 500 25 200

9 100,000 12,000 10 1,120,000 500 20 500
Large 10 250,000 15,000 10 2,650,000 500 20 1000

11 500,000 20,000 10 5,200,000 200 20 1500
12 600,000 25,000 12 7,500,000 200 20 2000

4.2 Implementation

Some notes regarding the implementation of the PCD are summarized next.
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Software: We used a custom code written in C++ with OpenMP, and compiled it with the Intelr

C++ Compiler 16.0 with -o3 optimization and -std=c++11. Double precision values were used

for matrices W and C. The observation matrix Y is binary and highly sparse, so the compressed

column and row representations were employed.

Hardware: Different hardware was used for difference SPRAFA problem instances. For experiments

1 through 4, we used a four-sockect Intel(R) Xeon(R) CPU E7- 4830 @ 2.13GHz with 8 cores

per socket and 256 GB memory. For experiments 5 through 10, Dell machines with 12x2.40GHz

Intel Xeon E5645 Processor Cores and 12 cores per node with 48 GB memory and Linux (RedHat

Enterprise Linux 6.1 2.6.32 Kernel) operating systems were used. For the rest of the experiments, we

used High Memory Compute (AMD CPUs) with 2.20GHz Processors, 32 cores per node (8 nodes),

and 256 GB RAM.

Datasets: The PCD algorithm is run on synthetic data. To generate synthetic data, we generate

sparse matrix W and non-sparse matrix C. Based on the model introduced in Section 2, the

observation matrix Y is generated. Since the observation matrix is highly sparse, a Markov process

(namely, random walk) was employed to remove many of its elements to achieve the sparsity of Y.

Taking Y as the data, W∗
Q×K and C∗K×N are then inferred by the PCD algorithm.

Reporting: The main challenge in dealing with high dimension non-convex optimization problems

is a large number of local optima, causing the majority of iteration-based algorithms to get stuck

without converging to a global optimum. Another issue with such large-scale optimization problems

is that the true optimum is usually unknown in real-world applications. Consequently, defining a

stopping criterion is problematic. In this paper, we consider two stopping criteria, one based on

runtime and the other based on the number of executed iterations. According to the first criterion,

the PCD algorithm traverses the solution space till a pre-set given time, at which point the current

best solution is returned and its objective function is reported; this objective function, defined in (5),

is the negative log-likelihood function that includes regularization terms. According to the second

criterion, the PCD executes a pre-selected fixed number of iterations and then returns the best found

solution. To ensure that the randomness in the initial conditions does not have a significant effect

on the solution quality, each experiment is run several times as reported in Table 1. In addition, the

time from the algorithm’s initialization till its termination is noted and reported. The speedup (Sp)

and efficiency (Ep) are also reported for each experiment. The speedup is defined

Sp =
Ts
Tp
, (9)

where Ts is the execution time of the sequential algorithm and Tp is the execution time of the

parallel algorithm with p processes. Note that the ideal (best possible) speedup is Sp = p, referred

to as a linear speedup. The efficiency is defined as

Ep =
Sp
p
. (10)
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4.3 Results for Small-sized Problem Instances

The first set of the experiments had four instances with 18, 280, 4,200 and 7,800 variables, respectively.

The PCD performance as a function of the number of cores was evaluated under both stopping

criteria. Figure 1 illustrates how the PCD algorithm convergence times grow as the number of

coordinates (i.e., cores) increases. It shows that when more coordinates are updated at once, the
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Figure 1: Comparison of the PCD convergence rates achieved with a different number of cores (p=1,2,4 and
6). Using more cores results in a faster convergence.

algorithm converges faster, particularly as the problem size increases. Figure 2 compares the averages

of the objective function obtained from 30 runs for each small-sized problem instance. The results

show that by increasing the number of cores (i.e. threads generated in OpenMP), the performance

of PCD improves, especially if a time limit (e.g. two minutes) is considered as the stopping criterion.

To explore how the addition of computational resources affects the run time, particularly when the

algorithm is run with a fixed number of iterations, the speedup values are reported in Figure (3).

For the small-sizes problem instances, the overhead cost of inter-core communication turns out to be

high to reap the substantial benefits from running the CD algorithm in parallel. This phenomenon

is particularly true for synchronous CD because of an unbalanced load distribution over the cores.

Table 2 summarizes the speedup and efficiency values obtained by running the experiments on a

different number of cores. Note that the value of Tp, used to calculate Sp, is taken as the average

over 30 runs.
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Figure 2: The averages of the objective function for the small-sized instances over 30 runs.

Table 2: Speedup and efficiency for instances 1 through 4 (NR: Not Reported).

Number of Cores Experiment 1 Experiment 2 Experiment 3 Experiment 4
Sp Ep(%) Sp Ep(%) Sp Ep(%) Sp Ep(%)

1 1 100 1 100 1 100 1 100
2 0.242 12.1 0.548 27.4 1.711 85.6 1.770 88.5
4 0.086 2.2 0.307 7.7 1.984 49.6 1.778 44.5
6 0.052 0.9 0.196 3.3 2.670 44.5 1.880 31.3
8 0.043 0.5 0.150 1.9 1.076 13.4 2.839 35.5
12 NR NR NR NR 1.145 9.5 1.613 13.4

4.4 Results for Medium-sized Problem Instances

The medium-sized experiments include four instances with 48,000 to 540,000 variables. The

performance of PCD algorithm was tested on these instances with a different number of cores.

Figure 4 depicts the averages of the objective function over 25 runs for four instances with random

initialization. Adding more cores results in improving the average of the objective function. As

discussed before, the speedup defined in (9) indicates the impact of parallelization on runtimes. The

speedup averages for the medium-sized instances are compared with respect to a linear speedup

(the ideal speedup) in Figure 5. The speedup values obtained for medium-sized problem instances
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Figure 4: The averages of the objective function for the medium-sized inctances improve over 25 runs.

lie below the line for the linear speedup. However, the speedup improves with a growing problem
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Figure 5: The averages of speedup for the medium-sized instances.

size. For instances 5 and 6, the maximum speedup is reached with eight cores while using 16 cores

gives the maximum speedup in instances 7 and 8. Table 3 reports the speedup and efficiency values

from running the PCD algorithm on instances 5 to 8 with a different number of cores. In the larger

instances, adding more computational resources (i.e. cores) improves the speedup.

Table 3: Speedup and Efficiency for experiments 5 through 8 (NR: Not Reported).

Number of Cores Experiment 5 Experiment 6 Experiment 7 Experiment 8
Sp Ep(%) Sp Ep(%) Sp Ep(%) Sp Ep(%)

1 1 100 1 100 1 100 1 100
2 1.947 97.4 1.913 95.7 1.894 94.7 1.854 92.7
4 2.223 55.6 3.142 78.6 3.143 78.6 3.348 83.7
8 3.546 44.3 3.712 46.4 4.128 51.6 5.103 63.8
16 3.023 18.9 3.333 20.8 4.711 29.4 5.370 33.6
24 NR NR NR NR 4.305 17.9 5.092 21.2

4.5 Results for Large-sized Problem Instances

The large-sized experiments include the instances with more than one million variables. Figure

6 illustrates the averages of the SPARFA objective function with a different number of processes

(cores) used exploited for the gradient-driven updates. Again, adding more cores improves the
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objective function value, on average, up to a certain threshold. Figure 7 shows the speedup values
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Figure 6: The averages of objective function for the large-sized instances over 25 runs.

and the level of parallelism that PCD achieves over large-sized problem instances. In this set of

experiments, the achieved speedup is greater than 7x. This level of speedup indicates that running

the PCD algorithm on a large optimization problem, which would otherwise take a week to solve,

will take just one day. Table 4 presents the achieved speedup and efficiency values for the large-sized

instances. Running the PCD algorithm on eight cores results in more than 70% efficiency. Note

that any larger efficiency in a shared memory system is unlikely, due to the overhead computing

costs, unless one uses all cache levels (i.e., L1, L2, L3, etc.) in a very efficient way.

An additional study is performed to establish the value of the parallel implementation of SPARFA

over its non-parallel counterpart. To this end, consider a practical scenario where SPARFA analysis

is to be performed regularly, within a limited time window. In a real-world setting, one can assume

that the inference results are to be updated overnight as students take on more questions, and hence,

more data become available. Then, any SPARFA run or runs should not take more than eight hours.

Indeed, taking into account the fact that the model contains a non-convex optimization component,

it is highly recommended to run the optimization algorithm multiple times, with randomly selected

values of W and C. To conduct an analysis for this case, 15 experiments including 5, 10 and 20

sets of 72-, 36- and 18-minute runs, respectively, were performed, with each set taking exactly 8
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Figure 7: The average speedup of large-size problems.

Table 4: Speedup and efficiency of experiments 9 to 12.

Number of Cores Experiment 9 Experiment 10 Experiment 11 Experiment 12
Sp Ep(%) Sp Ep(%) Sp Ep(%) Sp Ep(%)

1 1 100 1 100 1 100 1 100
2 1.951 97.6 1.973 98.6 1.992 99.6 1.947 97.4
4 3.578 89.4 3.645 91.1 3.421 85.5 3.506 87.7
8 5.424 67.8 5.710 71.4 5.194 64.9 5.787 72.3
16 6.221 38.9 6.838 42.7 7.155 44.7 6.995 43.7
24 5.763 24.0 6.326 26.4 7.247 30.2 7.403 30.8
32 4.462 13.9 5.779 18.1 6.998 21.9 7.343 22.9

hours in total (e.g., 20× 18 minutes = 8 hours), using 1, 4, 8, 16 and 32 cores.

Figure 8 shows the results for both the sequential and parallel CD algorithms on the largest

problems instance. The sequential SPARFA algorithm (CD with one core) is compared against its

parallel versions utilizing 4, 8, 16 and 32 cores. Because in any run, the algorithm might get stuck

in a local minimum, it was run with multiple restarts performed within an 8-hour time slot, and the

average and the best obtained objective function value (calculated using (5)) was reported. The

results show that the parallel SPARFA runs return significantly better objective function values.

This observation indicates that parallelizing SPARFA is a worthy undertaking.

In addition, the performance of the parallel SPARFA (with 32 cores) is compared against its
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Figure 8: The best objective function (left) and average of objective function (right) obtained in an 8-hour
run with 5, 10 and 20 random initialization utilizing 1,4, 8, 16 and 32 cores.

sequential counterpart, iteration by iteration. Since the performance of both sequential and parallel

algorithms rely upon starting points, this analysis tracks the improvement achieved during the same

number of iterations in the runs with the same initial solutions. In this experiment, each algorithm

is given 18 minutes (which amounts to 34 iterations per run) to optimize the objective function

of the LM problem, for ten randomly selected initial solutions. This setting was selected because

multiple 18-minute runs produced the best overall inference results over an 8-hour time period in the

previous set of experiments. Figure 9 depicts the observed objective function value dynamics over

time. Indeed, it confirms that the parallel SPARFA consistently achieves lower objective function

values, offering a 5-10% improvement; this improvement is substantial even with multiple algorithm

runs. Figure 9 (right) details the improvement observed in LM optimization achieved with the best

initial solution.

 

Figure 9: Parallel and Sequential SPARFA in 10 runs with randomly initialized C and W (left) Comparing
parallel and sequential SPARFA with the best initial candidate.
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5 Conclusion

This paper presents a parallel algorithm for SPARFA – a machine learning based approach to

student modeling that allows for predicting students’ performance on a set of questions they have

not yet taken. To this end, a parameteric model is fit to the available data of the observed student

question-answering outcomes using MLE. This MLE task results in a non-convex, non-smooth

optimization problem, which the originally proposed algorithm solves using an alternating gradient

approach, with two sub-problems solved iteratively till the convergence of both.

This paper attacked the scalability challenge in SPARFA, and offered a parallel version of

CD algorithm to solve it; the algorithm runs seven times faster, on average, than the sequential

approach, with higher speedups observed on larger problem instances. At each iteration, the

algorithm selects p variables without replacement to be updated in parallel in a shared memory

setting. The performance of the PCD algorithm was tested on several synthetic data sets, with the

largest one featuring hundreds of thousands of students and questions, thus being representative of

any realistically large MOOC.

The experimental results confirm that the parallelization significantly increases the efficiency of

use of computational resources (i.e., more than 70% efficiency with running the PCD algorithms on

eight cores in parallel). Note that due to inter-core communication, adding more computational

resources beyond some threshold does not lead to further speedup or efficiency improvements; the

threshold depends on the problem size.
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